1. How would you describe a causal relation? (See Introduction to article).

2. What is Albert Einstein’s theory of gravity? (See Who came up with the concept of quantum physics potentially changing our notions of cause and effect?)

3. What do the laws of classical physics demand? (See How has Fabio and his team shown that a single event can be both a cause and an effect?)

4. Fabio uses analogies of a coin and two buses to describe quantum superposition. Can you come up with another analogy to describe this? (See Understanding quantum superposition: How a single event can be both a cause and an effect)

5. One of the main stumbling blocks to our understanding of quantum physics is that it is counterintuitive. Can you give an example of where it is counterintuitive? (See ABOUT QUANTUM PHYSICS)

6. Why did Einstein believe that quantum physics was flawed? (See Introduction to ABOUT QUANTUM PHYSICS)

7. What is one of the main advantages of new quantum technologies? (See How has quantum physics evolved over the years?)

8. What could quantum technologies lead to in the future? Let your imagination run away with you! (See How has quantum physics evolved over the years?)

1. Take a look at this Youtube video from Physics Girl: What is a quantum coin toss, which describes how quantum coin flipping is the fairest way to flip a coin if you are on the phone:
 https://www.youtube.com/watch?v=UjFkly1GTIk

2. Podcasts can be a brilliant way of learning about new concepts and developing existing knowledge. Physics Today has named six specific podcasts for science lovers: https://tinyurl.com/tpwblo8

3. The Institute of Physics has dedicated an area of their site to helping students understand more about quantum physics. Have a look at their lessons and see if it is something you want to pursue: http://tap.iop.org/atoms/quantum/index.html