
A re computers smarter than you? Or are you 
smarter than computers? Well, it depends on how 
you define what it means to be ‘smart’. In recent 
years, we have developed computers that greatly 

exceed our own abilities in many tasks. For example, computers 
can perform thousands of calculations per second, meaning they 
can solve some mathematical problems far more quickly and 
accurately than humans. And computers have beaten human 
world champions at games of chess and go. But does this mean 
they are smarter than us? While computers can outperform 
humans in many domains, including arithmetic, object recognition 
and some aspects of language processing, no machine yet exists 
that can match human performance in all these domains. We 
are still unique in our ability to use our intelligence to adapt to a 
remarkably wide range of tasks.

What is human intelligence?
As humans, we have the unique ability to make connections 
between things we have previously learnt and use those to 
solve challenges in new situations. For example, your language 
processing abilities mean that if you hear an unfamiliar word, you 
can often infer its meaning from the context of the conversation, 
or know to look it up in a dictionary. While many animals display 
specialised forms of intelligence, humans are flexible and creative 
when dealing with unfamiliar circumstances as our brains have 
the capacity for adaptive learning. Your brain is also incredibly 
efficient, running on only about 20 Watts of power to control 
your whole body and mind – similar to a standard lightbulb!

Understanding how the human brain functions so efficiently 
and flexibly remains one of the greatest mysteries of science. 
Psychologists, neuroscientists and computer scientists hope to 
uncover this mystery with the help of computational models.

What are computational models?
A mathematical expression, or function, transforms an input to 
an output. For example, the function +10 transforms the inputs 
[1, 2, 90] to the outputs [11, 12, 100], by adding 10 to each input. 
An algorithm links multiple functions together in a rule-based 
sequence. For example, the algorithm +10, ×2 is a different 
algorithm than ×2, +10 (because 1 + 10 = 11, 11 × 2 = 22; while 1 × 2 
= 2, 2 + 10 = 12). A variable is an element of a function that can be 
assigned different parametric values. For example, if the function 
is +b, then the variable can be set to b = 1 (the parametric value is 
1, transforming [1, 2, 90] to [2, 3, 91]) or b = 314 (the parametric 
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value is 314, transforming [1, 2, 90] to [315, 
316, 404]). Computational models are built 
from mathematical functions linked together 
into algorithms with specific parametric 
variables. A model can then be used to explore 
how the assignment of different inputs to its 
variables affect its behaviour. This is helpful, as 
models can quickly become too complex to 
solve mathematically; in this case, a computer 
program can be run to see how the model 
behaves with different inputs.

How do scientists use 
computational models?
Scientists aim to create computational models 
that reproduce the patterns of behaviour 
exhibited by what is being modelled, such as 
human performance in a task. This involves 
exploring which functions to use, how to 
arrange these functions into algorithms, and 
testing different parametric values for each 
variable until the behaviour of the model 
matches the observed data (for example, how 
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Cognition — the mental process 
of acquiring, evaluating and/or using 
knowledge

Cognitive task — an activity that 
involves processing and/or recalling 
information

Computational model — the
expression of a set of mathematical
functions or algorithms in the form of a
computer program designed to emulate
a natural process, such as cognition

Intelligence — the ability to acquire 
and flexibly apply knowledge and skills to 
solve new problems

Language processing — the 
ability to formulate and understand 
language

Mind — the expression of cognition 
implemented by a physical system, such 
as the brain 

Neuron — a nerve cell that transmits 
messages to and from other neurons and 
other cells in the body and brain

Neuroscience — the study of tthe 
nervous system, including the brain

Stimulus — any input that can be 
processed to generate an internal or
external response by the nervous
system

Synapse — the part of a neuron
that communicates its signals to
other neurons



someone behaves when performing a task). Once 
scientists have created a model that replicates 
observed data, it can be used to generate predictions 
of future data. 

Computational models allow scientists to investigate 
how different components in complex systems 
interact by providing a way to mathematically 
express their theories of how they think the system 
may behave. When creating a computational 
model, scientists are forced to acknowledge all the 
assumptions on which their theory relies, as each 
assumption must be translated into an element of 
the model. Then, scientists can use the model to test 
the behaviour of the system, and any assumptions 
about it, by observing the system ‘in action’ in the 
form of a computer simulation. One common 
objection to computational models is that they make 
too many assumptions. However, the advantage 
of a model is that it makes those assumptions clear 
and concrete. One way to think about them is as 
hypotheses made precise by the model, that can 
then be tested in future experiments.

Weather forecasting: an example of a 
computational model
Some natural phenomena, such the orbit of the 
Earth around the Sun, can be well described by 
a single mathematical equation. This means that 
scientists can accurately calculate the position of 
our planet for any given day in the future. However, 
other phenomena, such as weather systems, 
involve complex dynamic interactions among a vast 
number of components (such as the molecules 
in the atmosphere) that cannot be simplified into 
a single equation to describe the behaviour of 
the full system. This means it is hard to predict 
future weather. However, scientists can tackle this 
complexity using computational models to forecast 
what the future weather might be like.

Weather is influenced by a variety of variables, 
including land temperature, air temperature, 
humidity, air pressure, wind speed and direction, 
and topographic features (such as mountains and 

water bodies), all of which influence the interactions 
among the molecules that make up the weather. 
Meteorologists create computational models of 
weather systems to examine how these different 
variables lead to different weather outcomes. For 
example, it is likely to rain if the temperature and 
humidity are both high but then the temperature 
drops, or if the wind carries air over a water body 
and then over a mountain. These statements can be 
converted into algorithms and combined to create 
computational weather models.

These models are tested on previously observed 
weather data. For example, if yesterday’s conditions 
of temperature, pressure, humidity, etc., are entered 
into the model as inputs, and the model produces 
an output that matches today’s weather, then 
this indicates that the functions, algorithms and 
parametric values used in the model do a good job of 
predicting future weather. If they do not accurately 
predict the weather, they can be modified in an 
effort to improve the model, which can then be used 
to better predict future weather.

Predictions of complex phenomena are always 
challenging, in part because there are so many 
interacting variables, and because uncertainties 
in the model can multiply and overwhelm initial 
assumptions. This means that computational models 
of the weather can make predictions with high 
accuracy for only a short distance into the future. 
For example, while the forecast of the weather in 
two hours’ time or tomorrow will be fairly accurate, 
a prediction of the weather in ten days’ time is likely 
to be less accurate.

Modelling minds: a computational 
model of the human brain
Like the weather, the functioning of the mind 
involves highly complex interactions over a vast 
number of parts - in this case, the neurons and 
synapses of the brain. To better understand 
these, scientists attempt to recreate them using 
computational models. At their core, computational 
models of the human brain are algorithms, many 
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of which are designed and trained with the goal 
of reproducing intelligent human behaviour. For 
example, a language processing model could use 
the previous words in this sentence to predict what 
word is going to appear _______. If you guessed 
‘next’ or ‘here’, then the language processing 
mechanisms in your brain work in a similar way to 
most people’s when making language predictions. 
These mechanisms are accurately predicted by 
many existing computational models of language 
processing.

Computational cognitive neuroscience is an 
emerging field that seeks to understand human 
cognition by building computational models that 
express theories of how the brain gives rise to 
cognition. To test whether these models operate in 
a similar way to the human mind, scientists compare 
their performance with findings from work in 
cognitive psychology studying human performance.

For over a century, psychologists have conducted 
experiments that use cognitive tasks to characterise 
the mental functions people use when solving 
problems, generating a wealth of data on human 
perception, memory, decision making, language 
learning, emotions, etc. These experiments have also 
revealed how the mind functions when the brain is 
disrupted, for example through injury or psychiatric 
conditions. In more recent years, neuroscientists 
have uncovered the structural organisation of the 
brain at different scales, from individual neurons 
to large brain regions. They have characterised the 
functions that different brain structures perform in 
tasks such as perception, memory and movement. 

These data are combined to build computational 
models of the human brain, enabling scientists 
to test how the operation of different brain 
mechanisms gives rise to different psychological 
functions. Understanding this relationship will 
not only provide insights into how disruptions to 
brain functions can be corrected but will also help 
scientists understand how to better implement 
intelligence in machines. 



Reward learning and prediction error
Many of the ways in which we exhibit intelligence 
are not exclusive to humans. Animals are born into 
complex environments where they learn about 
potential rewards (e.g., food) and dangers (e.g., 
predators). While millions of years of evolution have 
programmed certain instincts into animals (such 
as ‘seek food’ and ‘run away from mouths with lots 
of sharp teeth’), they also exhibit the capacity for 
adaptive learning.

The ability of (human and non-human) animals to 
adaptively learn how to behave can be simplified 
into a computational model. For example, a simple 
model might simulate how an animal holds a recent 
sensory input (such as a scent) in its memory, then 
uses that information as a predictor for the outcome 
of what happens next. For example, if the animal 
smells a berry then finds food, or smells a fox then 
almost gets eaten, then the next time the animal 
encounters that same sensory input, it can predict 
that a similar outcome will occur and either approach 
the reward or avoid the danger. When the prediction 
is accurate (the animal smells another berry then 
finds more food), this strengthens the association 
between the input stimulus and the response, while if 
the prediction is wrong, the association is weakened. 
Over time, the animal adaptively learns what stimuli 
will lead to different rewards and adversities.

However, while this sort of stimulus-response learning 
can lead to efficient behaviour, it can be inflexible. 
What happens if the circumstances change (e.g., the 
bush contains no more berries)?

Cognitive control and flexibility
While such association formation is a powerful and 
ubiquitous form of learning in animals, it can also be 
inflexible. Humans exhibit a remarkable ability to 
flexibly overcome such associations — and even basic 
reflexes — when needed. For example, if a person 
is instructed not to scratch an itch, they are able to 
do so (though it may be uncomfortable!). Simple as 
this seems, it shows that with a simple instruction, a 
person can instantaneously overcome the millions 
of years of evolution that produced that reflex (even 
reptiles scratch itches!). This ability is not matched by 
any other species.  

This flexibility can also be demonstrated using a 
simple cognitive experiment known as the Stroop 
task. In this task, a person is shown the written name 
of a colour displayed in a different colour than the 
word (e.g., GREEN). If they are told to respond 
to this stimulus out loud, they almost universally 
do so by reading the word (i.e., saying ‘green’) and 
almost never report the colour. This is because the 
association between the written word and verbal 
response is useful in many settings (e.g., reading) 
and so is strongly learnt, much like the association of 
the location of a berry bush with reward.

However, if the person is instructed to report the 
colour (i.e., say ‘red’), they can do so (although they 
may find it challenging). This relies on the capacity for 
cognitive control — the ability to take an instruction 
(or internal intention) and use it to override a strongly 
learnt association or instinctive reflex to achieve 
a different goal (e.g., naming the colour or not 
worsening the inflammation causing the itch).

Examples of computational 
cognitive neuroscience models

Cognitive control and task evaluation
When performing tasks, there is a trade-off between 
flexibility and efficiency. The human brain has a 
remarkable ability to switch between these two 
modes of operation, from efficient behaviour based 
on past learning to more flexible forms of behaviour 
that, although not quite as efficient, allow us to 
adapt quickly and effectively to new situations. One 
example of this is typing: almost anyone can quickly 
learn to use a keyboard, by typing one figure at a 
time.  This works for any keyboard, whether it is on 
a computer or a piano, but it is not very efficient. 
With practice, people can learn to use a particular 
keyboard with tremendous efficiency, but they might 
not transfer very well to a different keyboard (e.g., 
from a computer to a musical instrument). One 
of the primary functions of cognitive control is to 
decide when each type of behaviour is best, and guide 
behaviour accordingly.

Human memory
Memories are characterised by their duration 
(long-term memories last days to years; short-term 
memories last minutes to hours; working memories 
are actively maintained in your current awareness) 
and function (episodic memories are recollections 
of specific events, such as your tenth birthday party; 
semantic memories are ones about regularities and 
structure in the world, such the knowledge that birds 
fly while mammals (for the most part) do not). 

Different kinds of memory serve different functions. 
For example, episodic memories will help you make 
predictions in specific contexts, while semantic 
memories will help you make predictions across 
a wide variety of contexts. Long-term memories 
contain information that is occasionally useful 
and can be retrieved from storage when that 
information is relevant, while short-term memories 
contain information that was recently accessed 
and still needed for the current task (either newly 
encountered information or a long-term memory 
that was recently retrieved from storage). Another 
important role of cognitive control is to decide 
which type of memory is most useful for a particular 
problem, and to use that memory system for storage 
and/or retrieval.

Computational modelling has been useful in gaining a 
better understanding of how the brain carries out all 
these functions, from reward learning to the role of 
cognitive control in the use of memory for planning 
and problem solving, all of which contribute to the 
capacity for intelligent behaviour.
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 Pathway from 
school to 
computational 
cognitive 
neuroscience

• As computational cognitive 
neuroscience is an interdisciplinary 
field combining psychology, 
neuroscience and computer science, a 
degree in any of these subjects could 
lead to a career in the field. 

• A wide range of other subjects is 
also relevant for uncovering the 
mechanisms behind intelligence. 
For example, members of the 
Neuroscience of Cognitive Control 
Lab come from many different 
backgrounds, including machine 
learning, data science, electrical 
engineering, medicine, physics and 
philosophy. 

• Coding and computer programming 
are key skills for developing 
computational models, so look for free 
online tutorials where you can learn, 
such as Code Academy:  
www.codecademy.com

 

Neuroscience of Cognitive Control Lab 
Princeton Neuroscience Institute, 
Princeton University, USA

P
R

O
F

IL
E

Fields of research
Neuroscience, Psychology, 
Computational Modelling

Research project 
Investigating the neuroscientific and 
psychological mechanisms behind 
cognition and intelligence using 
computational models

Funders
US National Institutes of Health (NIH), 
National Science Foundation (NSF), 
Office of Naval Research

Websites
ncclab.princeton.edu 
www.psyneulink.org

Tools for computational 
modelling
The hardware and software used for computational 
models of intelligence are continually evolving 
as computer scientists, psychologists and 
neuroscientists work to solve problems and drive 
progress in the field. As computational practices 
change over time, with computational tools and 
programming languages continually evolving, 
computational modelling faces many challenges 
regarding the development of models in each field.

Ideally, there would be a universal programming 
language that could be used by all researchers 
who were interested in building models of the 
human brain and intelligence, which would make it 
easy for them to exchange and make use of each 
other’s models. In reality, there are many different 
types of models in use, written in many different 
programming languages, and each research project 
must consider trade-offs and make decisions 
that will influence the investigation and resulting 
computational models. 

To ensure continued progress in the field of 
computational cognitive neuroscience, it would 
be helpful if these many different computational 

models of human brain function and intelligence 
could be brought into the same framework so they 
could be evaluated, deconstructed and recombined 
into new models. PsyNeuLink is one experimental 
effort to do this. 

What is PsyNeuLink?
PsyNeuLink is a platform developed by researchers 
in the Neuroscience of Cognitive Control Lab at
Princeton University in the US. It is a modelling 
environment for building the computational 
models used by neuroscientists, psychologists and 
computer scientists to explore brain functions and 
psychological behaviours, and their relationship 
with artificial intelligence. In PsyNeuLink, scientists 
can construct different components of their 
models and integrate them into the modelling 
environment, where they can run the models as 
simulations and analyse their interactions. The aim 
is to develop a common repository for model-
sharing, allowing scientists working on different 
computational cognitive neuroscience projects to 
access the best modelling tools for uncovering how 
the brain gives rise to human intelligence, and how 
this can be implemented in machines. 
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I was interested in many topics when I was 
younger, including reading fiction, economics, 
computer science, robotics and debating. I didn’t 
know what I wanted to do with my career, so I 
explored all these different interests through high 
school. It wasn’t until my second year of college 
that I decided I wanted to be a cognitive scientist.

I work on understanding how memory can be 
used in abstract problem solving. I am particularly 

interested in how humans can learn so quickly 
from such little data – something that is currently 
very challenging for AI. I’ve discovered that we 
can take advantage of the relationships between 
concepts we’ve already learnt, which helps us learn 
new skills quickly, but current AI is less able to 
make connections between its past experiences.

I enjoy uncovering the ‘algorithms’ humans use 
to learn and make decisions. It was originally 
thought that humans struggle to multitask 
because our mental capacity is limited, but 
recent research hypothesises that it is the flexible 
nature of cognition that limits our ability to do 
multiple things at the same time. The human 
brain is good at reusing algorithms for different 
purposes. However, this causes issues if we try to 
simultaneously do different activities that use the 
same algorithms. I think this theory is interesting 
as it connects common experiences (such as the 

inability to drive safely while texting) to underlying 
principles. 

In my free time, I enjoy rock climbing and 
cooking. As a graduate student, my mind is very 
busy when I’m working, so these activities help me 
clear my mind and relax.

Tyler Giallanza 

Role: Graduate student

Field of research: 
Cognitive Psychology

If you want to become a scientist, don’t just study 
science. Studying non-scientific subjects, such 
as English and history, has been unexpectedly 
useful in my scientific career. Scientific discoveries 
require creative and critical thinking, rather than 
fact memorisation, and at school, these skills were 
most exercised in my humanities classes.

Tyler’s top tip

I have always been very curious about the 
world. I am not only interested in science, but 
also in history, politics, literature, art and music. 
I chose to become a researcher in the hope of 
contributing a little bit to humanity’s body of 
knowledge. 

As a cognitive scientist, I study learning and treat 
it as an investment, and I investigate when it is 
worthwhile to make that investment and when 
it isn’t. For example, if your teacher suddenly 
announces there will be a test tomorrow, you 
could lose sleep trying to review all your notes, but 
you might not be able to retain much information. 
However, if your teacher announces there will be 
a test next week, then you could dedicate some 

time every day to revise and you are likely to learn 
and remember more, so your learning investment 
will be more worthwhile.

I use a combination of simulations and behavioural 
measurements during games to study how we 
decide to invest in learning. I’ve found that this 
decision depends on several factors, such as how 
much time you have to learn, how fast you think 
you’ll learn, what your reward for learning will be 
and how far in the future it is. I’ve also discovered 
that there’s a key trade-off between satisfying 
immediate needs (i.e., instant gratification) and 
how quickly you’ll learn a new task. 

Science is about communication and 
collaboration, plus some well-intended conflict, 
to resolve which theories are correct and 
which are incorrect. I love working with my 
colleagues as there’s nothing more satisfying 
than encountering curious, energetic people who 
want to work together to figure out cool stuff!

You don’t have to actually study brains to 
‘study the brain’. Research is so vast that there 

are many different ways to contribute to the 
field of neuroscience. For example, while I am 
technically a brain scientist, I hardly ever deal 
with specific brain regions. Instead, I study the 
problems the brain solves, which generates 
important findings for other scientists who study 
the brain itself. 

When I’m not studying neuroscience, I play 
drums in an alternative rock band. We are called 
Burne Holiday (www.burneholiday.com), we 
have been playing together since college and 
we now have two albums and several cool cover 
songs. I love playing with the group!

Dr Javier Masís

Role: Postdoctoral 
researcher

Fields of research: 
Neuroscience, 
Cognitive Science

Cultivate your curiosity! The world becomes 
a much more interesting place when you start 
wondering how things work and why things are 
the way they are. 

Javier’s top tip

Meet members of the Neuroscience 
of Cognitive Control Lab
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I’ve always been interested in music. I played in 
indie bands during high school and college, and 
I’m an avid music collector. Sports were also a big 
part of my life in high school – I ran cross country 
and played soccer. Academically, I’ve wanted to 
study psychology for as long as I can remember. 
The more I learnt about psychology, the more 
interested I was.

I study how we switch between thinking in 
different ways. For example, if you switch between 
conversations in different languages, what’s 
going on in your brain during that transition? To 
investigate this, my team has developed a new 
cognitive task for measuring changes in attention 
that involves someone reading text while listening 
to someone else speaking, forcing them to switch 

between different tasks. By analysing people’s 
behaviour as they completed this cognitive task, 
we discovered that they follow two distinct steps 
when switching between reading and listening. 
First, they decide what to think about, then they 
gradually switch their attention to that task. 
The ability to measure these steps separately is 
important for developing a theory of how people 
switch their attention. 

I enjoy the excitement of finding patterns in 
human behaviour that help us uncover the 
structure of the human mind. With the right 
experiments, you can understand then predict 
how people will behave in different situations. 
It feels like you are doing physics or chemistry 
experiments, but with the brain!

I think it’s incredible that we can now decode the 
contents of the mind. By measuring someone’s 
brain activity, we can now reconstruct simple 
aspects of their thoughts. For example, imagine 
you are shown an X or an O, then asked to think 
about which shape you were looking at. By 
analysing images of your brain activity, scientists 
can tell (with high accuracy) whether you are 

thinking of an X or an O. It’s like mind-reading!

In my free time, I enjoy jogging and hiking. 
Running really helps me clear my head and 
improves my sleep. This year I ran my first half 
marathon. My wife and I often go hiking on 
weekends; there are lots of great trails in New 
Jersey. I also love to watch movies. Sometimes 
my friends and I sneak into the Princeton lecture 
halls in the evening and watch movies on the big 
projector screens! 

Dr Harrison Ritz

Role: Postdoctoral 
researcher

Field of research: 
Computational Cognitive 
Neuroscience

1. There are many ways to succeed, but the best
direction towards progress is to push yourself to 
try things that don’t come naturally to you.

2. Psychology and neuroscience increasingly
depend on computational modelling, so 
develop your quantitative skills and take 
classes in programming and statistics. 

3. Get involved in research labs to learn what
research involves and whether this is the right 
career path for you.

Harrison’s top tips


